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A Stability Analysis of the Perfectly Matched Layer Method 

S. Joe Yakura, David Dietz, Andy Greenwood and Ernest Baca 

Air Force Research Laboratory, Directed Energy Directorate, 
Kirtland AFB, New Mexico 87117 

Abstract 

We perform a detailed stability analysis based on the unsplit-field uniaxial perfectly matched layer (PML) 
formulation. Our finding shows that it is essential to have transverse field gradients present at all times to 
stabilize PML calculations. In the absence of transverse field gradients, the PML method becomes unstable 
with the axial field components growing linearly in time. 

I. INTRODUCTION 

Despite the successful implementation of the perfectly matched layer (PML) method to absorb outgoing 
waves at the artificial boundaries of a bounded numerical volume, the question of the stability of the PML 
method remains [1,2,3]. Abarbanel and Gottlieb [1] carried out a detailed stability analysis of Berenger's 
split-field PML formulation [4], and they concluded that the split-field PML equations are not 
mathematically strongly well-posed. Hence, these equations result in unstable field components that 
diverge linearly in time. 

In this paper we present a stability analysis starting with the unsplit-field uniaxial PML formulation 
[5,6], and derive a stability condition for the simple, nondispersive PML equations. The analysis shows that 
in rare instances the PML method results in an unstable condition. However, for PML parameter values 
used in most practical applications, the PML method is stable. 

II. MAXWELL'S EQUATIONS INSIDE PML 

For a plane wave propagating in the arbitrary x-y direction into a uniaxial anisotropic medium, the 2-D 
PML equations in the frequency (oo) domain are given by [5,6] 

VxH(oo;x,y) = jcoeoeRS
PML(u);x)E(co;x,y), (II. 1) 

VxE(co;x,y) = -jco(Xo^RSPML(co;x)H((0;x,y), (II.2) 

where E(co;x,y), H(co;x,y), EQ, eR, Uo, |iR and S
PML

(Cö) are the electric field vector, the magnetic field vector, 
the free-space permittivity, the relative permittivity, the free-space permeability, the relative permeability 
and the uniaxial anisotropic PML tensor, respectively. Elements of the uniaxial anisotropic PML tensor, 
SPML(co), are given by 

( 

SPML(co) 

-L-      o        o 
Sx(co) 

0 Sx(co)        0 

0 0        Sx(co) 

J 

(II.3) 

where Sx(co) is an arbitrarily defined co and x dependent function. It is a common practice in the FDTD 
community to choose Sx(co) in the form 



* 
Sx«D)=l + -^2—       with        _^L_ = _^L_ (II.4) 

J(0£O£R £O£R \IO\1R 

for the PML matching condition. The quantities Gx and ox* represent electric and magnetic conductivities 
arbitrarily introduced in order to implement the PML method. 

Since Maxwell's equations in 2-D decompose into transverse magnetic (TMZ) and transverse electric 
(TEZ) waves, these waves are considered separately in the stability analysis. 

ILA   TRANSVERSE MAGNETIC (TMZ) WAVE 

For TM2 waves, Eqs. (II. 1) through (II.4) reduce to the following three equations for three field 
components Hx(co;x,y), Hy(co;x,y) and E2(co;x,y): 

[VxH(co;x,y)]z = JCO£O£R(1+-^—)Ez(co;x,y), (II.5) 
JCOEOER 

[V xE(co; x, y)]x =     ~jC°WR    HX((0; x, y), (II.6) 

JCO£O£R 

[VxE(co;x,y)]y =-jco^^(l+-^^)Hy(co;x,y). (H.7) 
' J(B£O£R       

y 

Taking the inverse Fourier transform of the above equations results in the following time-dependent forms: 

aE,(t;x,y)+aL       t;x>y) + JLaH>(t;x,y)__LaHy(t;x,y)a0| ^ 
31 £O£R £O£R 3 y £O£R 3 X 

3 t £O£R 

(<5    \ 
2 

. £O£R  . 
vH(t;x.y)+-L^^ = 0. dl.9) 

p.o|iR       3 y 

3VxHf;X'y)+-^Vx
H(t;x,y)-Hx(t;x,y) = 0, (11.10) 

31 £O£R 

3Hv(t;x,y)     <j 1    3E ffx v) y   ' +-ga-Hy(t;x,y)      z(;'   'yJ=0. (11.11) 
31 £O£R      

3 JJ.O(XR 3 X 

In the above, the first order time-dependent equation [Eq. (11.10)] for Vx
H(t;x,y) is introduced to handle the 

delayed time-response of Hx(t;x,y). This equation follows naturally from the inverse Fourier transform of 
Hx(co;x,y) when Vx

H(t;x,y) is defined in the following integral form: 
t 

Vx
H(t;x,y)= fHx(t';x,y)exp[-(^2-Xt-t')]dt'. (0.12) 

J £O£R 
—OO 

Casting Eqs. (II.8) through (II. 11) into a more compact form results in 

f^^ + A™ ,WTM + BTM ,a^ + cTM #9W^_ = 0( (n ]3) 

3t      =      —       = 3x      = 3y 

where W™ = {Ez(t;x,y), Hx(t;x,y), Vx
H(t;x,y), Hy(t;x,y) }T, »is used to denote matrix multiplication, and 

matrix coefficients A™ , B™ and C™ are given by 



TM 

EOER 

0 
-er. 

£O£K 

0      -1 

0       0 

(c, \> 
EOER 

V      J 
g 

EOER 

EOER 

(11.14) 

B™ = 

0       0    0      
EOER 

0       0    0      0 

0       0    0      0 
-1 
     0    0      0 

(J.O|XR 

^TM 

0 

1 

p.O(iR 

0 

1 
EOER 

0 0 

0 0 0 

0 0 0 

0 0 °J 

(11.15-16) 

To carryout the stability analysis of Eq. (11.13), the Laplace transform is performed in the time domain 
and the Fourier transform in the spatial domain. The Laplace and Fourier transform function W™(s;kx,ky) 
of W™(t;x,y) is defined by 

S„+J« 

S0-J« 

W™(t;x,y)= — Jexp(st)ds  J" Jw™ (s; k x, k y) exp(jk x x + jkyy)dkxdky with Re(s)>s0. 

(11.17) 
Upon performing both Laplace and Fourier transforms, Eq. (11.13) becomes 

Q™ (s;kx,ky). W™(s;kx,ky) = W™(0;kx,ky), 

where Q™ (s;kx,ky) is the characteristic matrix of the TMZ wave defined by 

(11.18) 

Q™(s;kx,kv) = 

s + - 
jk, Jk* 

EOER       EOER 

IU.0JJ.H 

0 

|J.0JiR 

^a„ V 

EOER i EOER J 

EOER 

0 

-1        s + - 0 
EOER 

S + - 
av 

EOER 

(11.19) 

The stability of the system is characterized by investigating the determinant (or equivalently the 

eigenvalues) of the characteristic matrix D™ (s;kx,ky). The determinant gives the following quartic 

algebraic equation: 



f rr       \2 <<-     ^2 

S + — 
£O£R  , 

+ - 
eoeR|io|iR 

(     crv f   (kv) s+- 
£O£R   . £O£R(J.O|XR 

■ = 0. (11.20) 

II.B   TRANSVERSE ELECTRIC (TEZ) WAVE 

For TEZ waves, Eqs. (II. 1) through (II.4) reduce to the following three equations for three field 
components Hz(co;x,y), Ex(co;x,y) and Ey(co;x,y): 

[VxE(co;x,y)]z =-jco^n«(l+—^—)Hz((D;x,y), 
JCO£O£R 

[V *H(co; x, y)]x = —^^—Ex (oo; x, y), 

J(B£O£R 

[V xH(co; x, y)]v = JCOEOER (1 +——)EV (co; x, y). 
y JCO£O£R      

y 

(11.21) 

(11.22) 

(11.23) 

Following the same steps as in the TMZ wave case yields the following equations for the TEZ wave in the 
Laplace and Fourier domains: 

Tr ~ TF A TF 
QTE (s;kx,k  )• W    (s;kx,ky) = W    (0;kx,k  ), (11.24) 

where    WTE(s;kx,ky)= {H2(s;kx,ky), Ex(s;kx,ky), Vx
E(s;kx,ky), Ey(s;kx,ky) }T,    and     QTE (s;kx,ky)    is    the 

characteristic matrix of the TEZ wave defined by 

QTE(s;kx,ky) 

s+- 
£O£R 

£O£R 

0 

jkx 

EO£R 

-jky 

jJ.<)|0.R 

S — 

£O£R 

-1 

0 

0 

v EOEK   / 

°x S + — 
£O£R 

0 

Jkx 

|0.0(J.R 

0 

0 

s+- 
EOER 

(11.25) 

Taking the determinant of the characteristic matrix,   Q    (s;kx,ky), gives the following characteristic 

equation which is exactly the same as in the TMZ wave case: 

s+—±- 
EOER  . 

(kx)2 

£O£R{4.O(1R 

S+—— 
.        £O£R  . 

(kyr 
£O£R|J.O|J.R 

= 0. (11.26) 

HI.   STABILITY ANALYSIS FOR A UNIAXIAL PML MEDIUM 

To study Eq. (11.20) [or Eq. (11.26)] we first normalize s, kx and ky by setting 



f        \ ->s, 

£O£R 

' (K)2 " 
£O£R(J,OJJ.R 

f        ^2 

£O£R 
V J 

->(K.r   and 

' (ky)
2   ^ 

£o£R|J.ofi,R 

/ >2 

£O£R 
V J 

->(KV)
2. (III. 1-3) 

Now, Eq. (11.20) [or Eq. (11.26)] results in the following form: 

S2[(S + l)2+(KJ2] + (s + l)2(Ky)
2=0. (III.4) 

From this expression it is immediately apparent that if Ky is zero then two of the four roots are located at 
S = 0 in the complex S-plane, which results in unconditionally unstable behavior that grows linearly with 
time. These two roots are associated with the axial field component and the delayed time-response function 
of the axial field component. The other two roots are related to the incoming and outgoing damped 
transverse waves that propagate as exp [- (cx/£0£R) t ± jkxx]. 

On the other hand, if both Kx and Ky are real numbers then Eq. (III.4) has four complex roots [i.e. two 
sets of complex conjugate roots], and that the real parts of these roots can be shown to be all negative [see 
Appendix A]. Thus, all eigenfunctions associated with these eigenvalues are well-behaved and stable. 

As seen in Eq. (III.4), the term that contributes to stabilizing the system is the real part of Ky. 
Physically, this means that the transverse field gradients (in the y-direction for the present analysis) 
contribute to stabilize axial field (in the x-direction for the present analysis) components as TME and TE2 

waves propagate into a uniaxial anisotropic PML medium. 
Unfortunately, the actual PML system is not typically characterized by real Kx but rather by complex Kx 

because of the evanescent behavior of the propagating wave into the uniaxial PML medium. To investigate 
the effect of the imaginary part of Kx on the stability of a system, we solve Eq. (III.4) directly using 
MATHEMATICA software [7]. The exact expressions for the four complex roots are shown in 
Appendix B. Calculations show that for Im{ IKXI } » Re{ IKXI } it is possible for the real parts of the roots 
to become positive. However, in usual implementation of the PML method Im{ IKJ } » Re{ IKJ } is not 
normally satisfied; thus, it is unlikely that PML calculations become unstable for practical PML 
applications. 

IV .   EXTENDING THE STABILITY ANALYSIS TO CORNER REGIONS 

At a corner region of the 2D PML medium, the uniaxial anisotropic PML tensor, SPML(co), has to be 
modified to include contributions in both x and y directions as follows: 

SPML(co) 

Sy(co) 

Sx(a» 

0 

0 

0 

Sx(co) 

Sy(co) 
0 

0 

0 

Sx(co)Sy(co) 

(IV. 1) 

where Sy(co) is defined in the same way as Sx(co) to take the form 

Sy(oo) =1 + - 
J(0£O£R 

with 
£O£R |0.oJJ,R 

(IV.2) 

Using Eqs. (IV. 1) in Eqs. (II. 1) and (II.2), and following the same steps as in previous sections yields the 
following equations for the TMZ wave in the Laplace and Fourier domains at the 2D PML corner region: 



Q,M(s;kx,ky) 
( « TM 
W     (s;kx,ky) W     (0;kx,ky) (IV.3) 

where        ( W™(s;kx,ky) )corner = {E2(s;kx,ky), Hx(s;kx,ky), Vx
H(s;kx,ky), Hy(s;kx,ky), Vy

H(s;kx,ky) }T,       and 

(Q.     (s;kx,ky)) comer is the characteristic matrix of the TMZ defined by 

,TM (D,M(s;kx,ky)) y >> corner 

S + - 
EOER 

gx°y 

S (EOER)
2 

Jky 

0 

-jkx 

s-- 

|il))iR 

0 

80 £R 

<?x -Oy 

£O£R 

-1 

0 

0 

jk» 
EOER 

ov GV -a„ 
-(- 

£0 ER       EOER 
V 

s + - 
EOER 

0 

0 

EOER 

-1 

EOER        EtiEu 
V J 

s + - 
EOER ) 

,TM Taking the determinant of the characteristic matrix, (Q     (s;kx,ky)) coma, 

equation: 

(IV.4) 

gives the following characteristic 

( 
s+- 

EOER 

( 
S + - 

EOER 

+ S+- 
EOER 

(kx)
2 

£o£R(J.o}i,R 

\2 

S + - 
EOER 

(ky)
z 

£o£R|J.o|a.R 
= 0. (IV.5) 

As seen in the above equation one root is located at s = 0, which gives a stable solution in the time 
domain, and the other four roots can be obtained by setting the expression inside the square bracket to zero. 
For real values of kx and ky, a procedure similar to that in Appendix A shows the real parts of the four 
complex roots are always negative, implying stable solutions in the time domain. For arbitrary complex 
values of kx and ky, the real parts of the four complex roots have to be investigated numerically from the 
exact expressions shown in Appendix B. 

For the special case of ax = oy the equation formed by setting the expression inside the square bracket to 
zero can be solved exactly to obtain an analytical expression for the stability condition; in this case the 
square bracket term reduces to 

s+- 
EOER 

\2 

S + - 
£O£R 

+ (kxr+(kxr 
£O£R|J.O}XR 

(IV.6) 

Solving Eq. (IV.6) results in the double root s = - (CTX/EO£R), which give stable solutions in the time 

domain, and the other two roots s = - (ax/£o£R)±j{A/l/(£o£Rp4iR) k } where (k)2 = (kx)
2 + (ky)

2. Expressing 

k in terms of its real and imaginary parts as k=kR+jk', the two roots 

s = - (ox /£O£R)± J{^/1/(£O£RP.O|IR) ( kR + jk') } can be expressed as 

a 
s = - + i< 

£O£R 

[(kR)2+(k')2j 

£O£RU,OUJJ 

exp J tan 
'k1 ^ 

,   (kK * 0). (IV.7) 



In the above expression, one of the two roots gives a positive real value if the following condition is 
satisfied: 

or 

[(kR)2+(k')2]   . 
■sin 

£D£R|J.<I(XR 

k'>J»o„ 
£O£R 

tan" 
^k'^ cv 

£O£R 
(IV.8) 

(IV.9) 

Hence, the PML system becomes unstable if the above condition is met for the case ox=Gr 

The stability analysis of TE2 waves in corner regions results in the same stability condition as for TMZ 
waves. 

V.   CONCLUSIONS 

Starting with unsplit-field uniaxial PML formulation in the frequency domain, Maxwell's equations are 
cast into a set of first order differential equations in time. Then, using the Laplace and Fourier transforms, 
the characteristic equation of a system is obtained and investigated for its dynamic stability. 

From stability analysis, we find that it is essential for the transverse field gradients to be present at all 
times in order to stabilize PML calculations. In fact, in the absence of transverse field gradients the PML 
method becomes unstable with the axial field components growing linearly in time. 
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Appendix A 

A proof to show that the real parts of the roots of the polynomial, S2 [ (1 + S f + a] + (1 + S f b = 0 with 
positive real coefficients a and b, are all negative. 

Theorem: 
Consider the equation 

2. 

3. 

4. 

5. 

6. 

S/[(S+l)2+a] + (S + l)2b = 0,  SeC (A.1) 



where a, b > 0. Then 
(i) Eq. (A. 1) has no real solutions; 
(ii) If Sj = oti + jßi, i =1, 2, 3,4 (ßs* 0) are the roots of Eq. (A.l) then a, < 0, i = 1, 2, 3,4. 

Proof: 
(i) Rewrite Eq. (A.l) as 

S2[(S + l)2+a] = -(S + l)2b, (A.2) 

and note that, since a, b > 0, if S E R \{-l,0} then theLHS of Eq. (A.2) >0 and the RHS of Eq. (A.2) <0, 
a contradiction; while if S = -1 then the LHS of Eq. (A.2) > 0 and the RHS of Eq. (A.2) = 0 and if S = 0 
then the LHS of Eq. (A.2) = 0 and the RHS of Eq. (A.2) < 0, also contradictions. Thus, if S satisfies 

Eq. (A.l) then S$l. Further, all four solutions are of the form S = a + jß, a, ß E R, ß * 0. 

(ii) If S = a + jß is any solution of Eq. (A.l) then 

(a+jß)2[(a+jß+l)2+a]+(cc+jß+l)2b = 0. (A.3) 

Expanding and equating real and imaginary parts of Eq. (A.3) to zero gives 

(a2 -ß2)2 -4a2ß2 +2[a (a2 -ß2)-2aß2] + (l + a + b)(a2 -ß2) + 2ab + b = 0 (A.4) 
and 

ß[2a(a2-ß2) + 2a2+(cc2-ß2) + (l+a + b)a + b] = 0. (A.5) 

In Eq. (A.5) the term in brackets must be equal to zero since, otherwise, ß = 0, which is not possible since 

S E R. Rewritten the term results in 

-(2cc+l)ß2+2a3+3a2+(l + a + b)oc+b = 0.- (A.6) 

If a = -Vi then we are done (since then a < 0). Otherwise, if a & -Vi then Eq. (A.6) gives 

and 

ß2= ——[2a3+3a2+(l + a + b)cc + b] (A.7) 
2oc+1 v ' 

ß2-cr=—!—[2<x2+(l + a + b)cc+b]. (A.8) 
2cc + l 

Substituting Eqs. (A.7) and (A.8) into Eq. (A.4) and simplifying leads to 

16oc6+48a5+8(7 + a + b)a4+16(2 + a + b)oc3 

+ [(l + a + b)2+8(l + a + b)]a2+(l + a + b)2cc+ab = 0. (A.9) 

Since a, b > 0 then all coefficients in Eq. (A.9) are > 0; thus, by Descartes's Rule of Signs [8], Eq. (A.9) has 
no positive roots. Further, zero is not a root of Eq. (A.9). Hence, all real roots of Eq. (A.9) are < 0. Finally, 
otj, i = 1, 2, 3,4 must be among the solutions of Eq. (A.9) so 0Ci < 0, i = 1, 2, 3,4. 

Appendix B 

Four complex roots of the polynomial, S4 + a S3 + b S2 + c S + d =0, with complex coefficients a, b, c and d 
are given by [7] 



where 

a    1    a^    2b 
S, = J + n-- 

4    2 V 4      3 

a2    4b (-a3+4ab-8c) 

n (2,/3)0 »F 

3vp        3(2'«)' 

0 = b2-3ac + 12d, 

T = fr+V-4<E)3+r 
1/3 

r = 2b3 -9abc + 27c2 +27a2d-72bd . 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 
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